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5-Phenylthio-1,3-cyclopentadiene reacted with maleic anhydride
to give a 4 : 6 mixture of syn- and anti-attack adducts. In
contrast, the selenium isologue, 5-phenylseleno-1,3-cyclopentadiene
reacted with dienophiles with remarkable anti-T-facial selectivity

to give the corresponding anti-attack adducts, exclusively.

The origin of m-facial stereoselectivity in Diels-Alder reactions of 5-sub-
stituted cyclopentadienes, the simplest dienes with unsymmetric m-plane, has been
one of the subjects of intensive studiesz'6) and the following m-facial
stereoselectivities were reported: 1) 5-Acetoxy- and 5-hydroxy-1,3-cyclopenta-
dienes react with dienophiles with remarkable syn-m-facial selectivity and

4,6) reacts with syn-m-facial preference; 2)

3a,c,5)

1,2,3,4,5-pentachlorocyclopentadiene
The dienes having 5-alkyl or 5-trimethylsilyl group give opposite results.
The anti-selectivity can be simply explained by steric approach control, but the
syn-selectivity is still not fully understood.

In this paper, we wish to report the fiist synthesis of 5-phenylseleno-1,3-
cyclopentadiene (1b) and show a high dependence of m-facial stereoselectivity upon
heteroatom substituents in Diels-Alder reactions of 5-phenylthio-1,3-cyclopenta-
diene (1a) and the diene 1b.

5-Phenylthio-1,3-cyclopentadiene (1a) was prepared from the reaction of thal-
lium cyclopentadienide and phenylsulfenyl chloride in carbon tetrachloride.7) The
diene 1a was very easily isomerized due to [1,5] proton transfer.3a'7'8) Thus,
after removal of precipitated thallium chloride, an equimolar amount of maleic
anhydride was immediately added. The reaction mixture was allowed to stand at -20
°C for 12 h to give a 4 : 6 mixture of syn- and anti-attack products, 8-endo- and
8-exo-phenylthio-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione, (2a) and
(3a) [isolated yields: 2a(as diacid); 21%, 3a; 28%](Scheme 1).9'11) The struc-
tures of 2a and 3a were determined on the basis of their TH-NMR solvent shifts and
chemical correlations.Ga'14) Low mw-facial selectivity in Diels-Alder reaction of
1a was contrasting to the remarkable syn-T-facial selectivities observed in the

oxygen examples.4)
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1a 2a: 21%(Diacid) 3a: 28%
Scheme 1.

In contrast, 5-phenylseleno-1,3-cyclopentadiene (1b) reacted with dienophiles
with remarkable anti-m-facial stereoselectivity. The diene 1b was similarly pre-
pared from phenylselenenyl bromide and thallium cyclopentadienide in carbon tetra-
chloride at 10 °C under nitrogen atmosphere.3a'7) Although, the diene 1b was
rather stable than 1a, isolation of 1b failed.12) After removal of thallium
bromide, an equimolar amount of maleic anhydride was added. After standing at 10
°c for 84 h, anti-attack product, 8-exo-phenylseleno-3a,4,7,7a-tetrahydro-4,7-
methanoisobenzofuran-1,3-dione (3b) was exclusively obtained in 69% yield (mp 121-
124 °C).13) The reactions of the diene 1b with N-phenylmaleimide and dimethyl
fumarate also exclusively gave the corresponding anti-attack products 4b and 5b in

). 14)

32 and 34% yields, respectively (Scheme 2 TH-NMR monitoring of the reaction

mixture showed no formation of any other stereoisomers.

PhSe H
Hi~c-0<R3 N g3
CCl4, 10°C, 12-84 h ] R2
SePh 1
1b R

3b: R',R?= (CO)oco, R3= H, 69%, mp 121-124 °C
4b: R',R%2= (CO)N(Ph)cO, R3= H, 32%, mp 211-212 °C
Scheme 2. 5b: R'=R3= 00,CH3, R%= H, 348%™, mp 79-80 °C
*in the presence of AlCl3‘Et20

No existing theories can generally account for the fact: 5-hydroxy- and 5-

acetoxydienes react with remarkable syn-m-facial selectivity,4)

5-phenylthio-
diene l1a without m-facial selectivity and 5-phenylseleno diene 1b with remarkable
anti-m-facial selectivity. At pre- H X X= H

sent time, we wish to tentatively >

‘\‘J(\R' gi\\\\/’ Rl
R
bilities of the syn- and anti-attack

transition states (Fig. 1). Syn-attack Anti-attack

The syn-attack transition state may Transition states

explain the selectivity of the oxy-
genated dienes based on the hypoth-

esis founded on the relative. sta-

be more stable due to the favorable Fig. 1.
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interaction of m7-electrons with the polarized C(7)-X bond from the back side.
Since the electronegativities of heteroatoms decrease in the order of oxygen >
sulfur > selenium, the syn-m-facial selectivity will be decreased in that
order.16'17) In the reaction of the diene 1b, anti-w-facial selectivity can be
simply accounted for in terms of steric approach control.

Further investigations on the selectivity and synthetic application of the
dienes 1a and 1b are now in progress.
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